A supernova is the explosive death of a star, during which it rapidly ejects most of its mass in a brilliant burst of light. In core‑collapse supernovae (Types Ib, Ic, II), massive stars (≥ 8 solar masses) exhaust their nuclear fuel, collapse under gravity, and explode. In Type Ia supernovae, a white dwarf in a binary system undergoes runaway fusion after accreting mass. These events deliver heavy elements into space, leave behind neutron stars or black holes, and power typical shock‑front supernova remnants.
Source: heasarc.gsfc.nasa.gov
29/05/2002

What may appear fuzzy to some makes things crystal clear to others. The cosmic microwave background radiation emanating from the universe could only have the above fuzzy pattern if it contained clear amounts of dark matter and dark energy. The conclusion, based on a detailed analysis of the temperature and spacing of the bumps, was a surprise to those who felt that previous evidence for such a strange universe, based on observations of distant supernovae, was somehow inaccurate. The measurements were made with a novel group of microwave telescopes in Tenerife, Spain called the Very Small Array. The bumps appearing above are some of the oldest objects ever seen.